Submit Manuscript  

Article Details


Nanomaterials for Deep Tumor Treatment

Author(s):

Daria Yu. Kirsanova*, Zaira M. Gadzhimagomedova, Aleksey Yu. Maksimov and Alexander V. Soldatov   Pages 1 - 12 ( 12 )

Abstract:


According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to try to solve this medical and social problem by developing new methods for cancer treatment. An alternative to more wellknown approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT) which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus being on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.

Keywords:

X-ray photodynamic therapy, photodynamic therapy, cancer treatment, photosensitizer, nanoparticle, scintillator, nanomaterials, reactive oxygen species

Affiliation:

The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, National Medical Research Centre for Oncology, 14 liniya str. 63, 344037, Rostov-on-Don, The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don



Read Full-Text article